Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Assoc Res Otolaryngol ; 24(5): 513-525, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37783963

RESUMO

PURPOSE: Speech-in-noise (SIN) traits exhibit high inter-subject variability, even for healthy young adults reporting normal hearing. Emerging evidence suggests that genetic variability could influence inter-subject variability in SIN traits. Genome-wide association studies (GWAS) have uncovered the polygenic architecture of various adult-onset complex human conditions. Polygenic risk scores (PRS) summarize complex genetic susceptibility to quantify the degree of genetic risk for health conditions. The present study conducted PRS-based association analyses to identify PRS risk factors for SIN and hearing threshold measures in 255 healthy young adults (18-40 years) with self-reported normal hearing. METHODS: Self-reported SIN perception abilities were assessed by the Speech, Spatial, and Qualities of Hearing Scale (SSQ12). QuickSIN and audiometry (0.25-16 kHz) were performed on 218 participants. Saliva-derived DNA was used for low-pass whole genome sequencing, and 2620 PRS variables for various traits were calculated using the models derived from the polygenic risk score (PGS) catalog. The regression analysis was conducted to identify predictors for SSQ12, QuickSIN, and better ear puretone averages at conventional (PTA0.5-2), high (PTA4-8), and extended-high (PTA12.5-16) frequency ranges. RESULTS: Participants with a higher genetic predisposition to HDL cholesterol reported better SSQ12. Participants with high PRS to dementia revealed significantly elevated PTA4-8, and those with high PRS to atrial fibrillation and flutter revealed significantly elevated PTA12.5-16. CONCLUSION: These results indicate that healthy individuals with polygenic risk of certain health conditions could exhibit a subclinical decline in hearing health measures at young ages, decades before clinically meaningful SIN deficits and hearing loss could be observed. PRS could be used to identify high-risk individuals to prevent hearing health conditions by promoting a healthy lifestyle.


Assuntos
Percepção da Fala , Fala , Humanos , Adulto Jovem , Autorrelato , Estudo de Associação Genômica Ampla , Audição , Fatores de Risco
2.
J Chem Theory Comput ; 17(10): 6036-6052, 2021 Oct 12.
Artigo em Inglês | MEDLINE | ID: mdl-34546738

RESUMO

Density matrix quantum Monte Carlo (DMQMC) is a recently developed method for stochastically sampling the N-particle thermal density matrix to obtain exact-on-average energies for model and ab initio systems. We report a systematic numerical study of the sign problem in DMQMC based on simulations of atomic and molecular systems. In DMQMC, the density matrix is written in an outer product basis of Slater determinants. In principle, this means that DMQMC needs to sample a space that scales in the system size, N, as O[(exp(N))2]. In practice, removing the sign problem requires a total walker population that exceeds a system-dependent critical walker population (Nc), imposing limitations on both storage and compute time. We establish that Nc for DMQMC is the square of Nc for FCIQMC. By contrast, the minimum Nc in the interaction picture modification of DMQMC (IP-DMQMC) is only linearly related to the Nc for FCIQMC. We find that this difference originates from the difference in propagation of IP-DMQMC versus canonical DMQMC: the former is asymmetric, whereas the latter is symmetric. When an asymmetric mode of propagation is used in DMQMC, there is a much greater stochastic error and is thus prohibitively expensive for DMQMC without the interaction picture adaptation. Finally, we find that the equivalence between IP-DMQMC and FCIQMC seems to extend to the initiator approximation, which is often required to study larger systems with large basis sets. This suggests that IP-DMQMC offers a way to ameliorate the cost of moving between a Slater determinant space and an outer product basis.

3.
Nat Comput Sci ; 1(12): 801-808, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-38217186

RESUMO

Computationally efficient and accurate quantum mechanical approximations to solve the many-electron Schrödinger equation are crucial for computational materials science. Methods such as coupled cluster theory show potential for widespread adoption if computational cost bottlenecks can be removed. For example, extremely dense k-point grids are required to model long-range electronic correlation effects, particularly for metals. Although these grids can be made more effective by averaging calculations over an offset (or twist angle), the resultant cost in time for coupled cluster theory is prohibitive. We show here that a single special twist angle can be found using the transition structure factor, which provides the same benefit as twist averaging with one or two orders of magnitude reduction in computational time. We demonstrate that this not only works for metal systems but also is applicable to a broader range of materials, including insulators and semiconductors.

4.
J Chem Theory Comput ; 16(2): 1029-1038, 2020 Feb 11.
Artigo em Inglês | MEDLINE | ID: mdl-31944692

RESUMO

We here apply the recently developed initiator density matrix quantum Monte Carlo (i-DMQMC) to a variety of atoms and molecules in vacuum. i-DMQMC samples the exact density matrix of a Hamiltonian at finite temperature and combines the accuracy of full configuration interaction quantum Monte Carlo (FCIQMC)-full configuration interaction (FCI) or exact energies in a finite basis set-with finite temperature. In order to explore the applicability of i-DMQMC for molecular systems, we choose to study a recently developed test set by Rubenstein and co-workers: Be, H2O, and H10 at near-equilibrium and stretched geometries. We find that, for Be and H2O, i-DMQMC delivers energies with submillihartree accuracy when compared with finite temperature FCI. For H2O and both geometries of H10, we examine the difference between FT-AFQMC and i-DMQMC, which, in turn, estimates the difference in canonical versus grand canonical energies. We close with two discussions: one of simulation settings (initiator error, the interaction picture, and different basis sets), and another of energy difference calculations in the form of specific heat capacity and ionization potential calculations.

5.
J Chem Theory Comput ; 15(10): 5332-5342, 2019 Oct 08.
Artigo em Inglês | MEDLINE | ID: mdl-31449406

RESUMO

We here develop a fully quantum embedded version of initiator full configuration interaction quantum Monte Carlo (i-FCIQMC) and apply it to study an ionic bond (lithium hydride, LiH) and a covalent bond (hydrogen flouride, HF) physisorbed to a benzene molecule. The embedding is performed using a recently developed Huzinaga projection operator approach, which affords good synergy with i-FCIQMC by minimizing the number of orbitals in the calculation. When considering the dissociation energy of these bonds into closed-shell ionic fragments, we find that i-FCIQMC embedded in density functional theory (i-FCIQMC-in-DFT) delivers comparable accuracy with coupled cluster singles and doubles with perturbative triples embedded in density functional theory (CCSD(T)-in-DFT). In treating the bond dissociation energy curve of HF, i-FCIQMC-in-DFT has improved accuracy over CCSD(T)-in-DFT due to the presence of strong correlation. We discuss the implications of the new i-FCIQMC-in-DFT method as applied to bond breaking in catalysis.

6.
Carbohydr Res ; 435: 195-207, 2016 Nov 29.
Artigo em Inglês | MEDLINE | ID: mdl-27816838

RESUMO

The utilization of substoichiometric amounts of commercially available nickel(II) triflate as an activator in the reagent-controlled glycosylation reaction for the stereoselective construction of biologically relevant targets containing 1,2-cis-2-amino glycosidic linkages is reported. This straightforward and accessible methodology is mild, operationally simple and safe through catalytic activation by readily available Ni(OTf)2 in comparison to systems employing our previously in-house prepared Ni(4-F-PhCN)4(OTf)2. We anticipate that the bench-stable and inexpensive Ni(OTf)2, coupled with little to no extra laboratory training to set up the glycosylation reaction and no requirement of specialized equipment, should make this methodology be readily adopted by non-carbohydrate specialists. This report further highlights the efficacy of Ni(OTf)2 to prepare several bioactive motifs, such as blood type A-type V and VI antigens, heparin sulfate disaccharide repeating unit, aminooxy glycosides, and α-GalNAc-Serine conjugate, which cannot be achieved in high yield and α-selectivity utilizing in-house prepared Ni(4-F-PhCN)4(OTf)2 catalyst. The newly-developed protocol eliminates the need for the synthesis of Ni(4-F-PhCN)4(OTf)2 and is scalable and reproducible. Furthermore, computational simulations in combination with 1H NMR studies analyzed the effects of various solvents on the intramolecular hydrogen bonding network of tumor-associated mucin Fmoc-protected GalNAc-threonine amino acid antigen derivative, verifying discrepancies found that were previously unreported.


Assuntos
Aminoglicosídeos/síntese química , Níquel/química , Aminoglicosídeos/química , Catálise , Glicosilação , Ligação de Hidrogênio , Estrutura Molecular , Estereoisomerismo
7.
Biochemistry ; 53(9): 1477-84, 2014 Mar 11.
Artigo em Inglês | MEDLINE | ID: mdl-24524298

RESUMO

The carbohydrate binding protein, Cyanovirin-N, obtained from cyanobacteria, consists of high-affinity and low-affinity binding domains. To avoid the formation of a domain swapped structure in solution and also to better focus on the binding of carbohydrates at the high-affinity site, the Ghirlanda group (Biochemistry, 46, 2007, 9199-9207) engineered the P51G-m4-CVN mutant which does not dimerize nor binds at the low-affinity site. This mutant provides an excellent starting point for the experimental and computational study of further transformations to enhance binding at the high-affinity site as well as to retool this site for the possible binding of different sugars. However, before such endeavors are pursued, detailed understanding of apparently key interactions both present in wild-type and P51G-m4-CVN at the high-affinity site must be derived and controversies about the importance of certain residues must be resolved. One such interaction is that of Glu41, a charged residue in intimate contact with 2'OH of dimannose at the nonreducing end. We do so computationally by performing two mutations using the thermodynamic integration formalism in explicit solvent. Mutations of P51G-m4-CVN Glu41 to Ala41 and Gly41 reveal that whereas the loss of Coulomb interactions result in a free energy penalty of about 2.1 kcal/mol, this is significantly compensated by favorable contributions to the Lennard-Jones portion of the transformation, resulting in almost no change in the free energy of binding. At least in terms of free energetics, and in the case of this particular CVN mutant, Glu41 does not appear to be as important as previously thought. This is not because of lack of extensive hydrogen bonding with the ligand but instead because of other compensating factors.


Assuntos
Proteínas de Bactérias/química , Proteínas de Bactérias/metabolismo , Proteínas de Transporte/química , Proteínas de Transporte/metabolismo , Manose/metabolismo , Proteínas de Bactérias/genética , Sítios de Ligação , Proteínas de Transporte/genética , Manose/química , Simulação de Dinâmica Molecular , Mutação , Ligação Proteica
8.
J Am Chem Soc ; 132(26): 9087-95, 2010 Jul 07.
Artigo em Inglês | MEDLINE | ID: mdl-20540518

RESUMO

In this study, we present a general-purpose methodology for deriving the three-dimensional (3D) arrangement of multivalent transmembrane complexes in the presence of their ligands. Specifically, we predict the most likely families of structures of the experimentally intractable trimeric asialoglycoprotein receptor (ASGP-R), which consists of human hepatic subunits (two subunits of H1 and one subunit of H2), bound to a triantennary oligosaccharide (TA). Because of the complex nature of this multivalent type-II transmembrane hetero-oligomeric receptor, structural studies have to date been unable to provide the 3D arrangement of these subunits. Our approach is based on using the three-pronged ligand of ASGP-R as a computational probe to derive the 3D conformation of the complex and then using this information to predict the relative arrangement of the protein subunits on the cell surface. Because of interprotein subunit clashes, only a few families of TA conformers are compatible with the trimeric structure of ASGP-R. We find that TA displays significant flexibility, matching that detected previously in FRET experiments, and that the predicted complexes derived from the viable TA structures are asymmetric. Significant variation exists with respect to TA presentation to the receptor complex. In summary, this study provides detailed information about TA-ASGP-R interactions and the symmetry of the complex.


Assuntos
Receptor de Asialoglicoproteína/química , Receptor de Asialoglicoproteína/metabolismo , Biologia Computacional , Oligossacarídeos/metabolismo , Multimerização Proteica , Estrutura Quaternária de Proteína , Animais , Configuração de Carboidratos , Sequência de Carboidratos , Humanos , Camundongos , Simulação de Dinâmica Molecular , Dados de Sequência Molecular , Oligossacarídeos/química , Ligação Proteica , Subunidades Proteicas/química , Subunidades Proteicas/metabolismo , Ratos , Software
9.
J Phys Chem B ; 113(31): 11003-15, 2009 Aug 06.
Artigo em Inglês | MEDLINE | ID: mdl-19588947

RESUMO

In this article, we characterize the behavior of water on the surface of a diverse group of carbohydrates and attempt to determine the role of saccharide size, linkage, and branching as well as secondary structure on the dynamics and structure of water at the surface. In order to better understand the similarities and differences in the behavior of the solvent on the carbohydrate surface, we explore residence times, rotational correlation functions, local solvent occupancy numbers, and diffusivities. We find that due to the differences in secondary structure water residence times are longer and translational and rotational dynamics are retarded when in contact with wide helices and branched sugars. In the case of extended helices and smaller oligosaccharides, water dynamics is faster and less hindered. This indicates that branching, the type of linkage between monomers, and the anomeric configuration all play a major role in determining the structure and dynamics of water on the surface of carbohydrates.


Assuntos
Oligossacarídeos/química , Água/química , Configuração de Carboidratos , Sequência de Carboidratos , Modelos Moleculares , Dados de Sequência Molecular , Movimento (Física)
10.
J Biomol Struct Dyn ; 26(2): 203-14, 2008 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-18597542

RESUMO

Protein folding is scientifically and computationally challenging problem. The early phases of protein folding are interesting due to various events like nascent secondary structure formation, hydrophobic collapse leading to formation of non-native or meta-stable conformations. These events occur within a very short time span of 100 ns as compared to total folding time of few microseconds. It is highly difficult to observe these events experimentally due to very short lifetime. Molecular dynamics simulation technique can efficiently probe the detailed atomic level understanding about these events. In the present paper, all atom molecular dynamics simulation trajectory of nearly 200 ns was carried out for fully solvated villin headpiece with PME treatment using AMBER 7 package. Initial hydrophobic collapse along with secondary structure formation resulted into formation of partially stable non-native conformations. The formation of secondary structural elements and hydrophobic collapse takes place simultaneously in the folding process.


Assuntos
Simulação por Computador , Proteínas dos Microfilamentos/química , Dobramento de Proteína , Animais , Humanos , Proteínas dos Microfilamentos/genética , Modelos Moleculares , Estrutura Secundária de Proteína , Software
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...